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Problem A. Sort and &
The minimum cost of sorting the array will be either 0 or 1. If the array size is 2k − 1 (for some k) and
the last position does not contain the correct number then the answer is 1. Otherwise 0.

Let’s analyze the case when the array size is not 2k − 1. We will try to put the numbers into the right
position one by one from the end. Suppose N is at the position a and there must be a zero bit in a, say
that is at x. Then with 0 cost we can swap numbers between the positions of 2x and a. Similarly there
must be a zero bit in N , say that is y. If x = y we do not need to do anything, otherwise we can swap the
positions 2x and 2y. And finally we can swap the positions 2y and N . This way we can bring the correct
number to the last position of the array.

It’s not difficult to see that, when the original array size is 2k−1 and we need to bring the correct number
to the last position, it would take at least 1 cost.

This solution does not take more than 3N swaps.

Problem B. Gona Guni
Instead of counting sum(the minimum vertex cover)m, we can use the ordered pair technique. This
insight leads to solving a different problem: select a set of vertices of upto m size, in how many different
subsets of vertices of the tree these vertices are guaranteed to be selected as the minimum vertex cover.
Then we count the sum over the sizes of all sets of vertices.

What we really want is given a set of vertices from the minimum vertex cover, can we get back the original
sub-tree. That way we can generate all possible subtrees and in turn count the subset of vertices that will
contain this given set as minimum vertex cover. This turns out to be difficult to do, unless you consider
the maximum matching instead of minimum vertex cover and always assign the vertex closer to the root
(of the whole tree) as the cover vertex.

This approach can lead to a bottom up sibling dp solution. From each node we need to calculate 2 things,
the number of ways to select k ≤ m maximum matching with the subtree below the vertex and the sibling
vertices with the current vertices matching with one of the children or the current vertices becoming
available for matching with the parent. Merging the count from the children and the siblings requires
convolution, thankfully with some small optimization we can avoid doing fft.

This dp calculation is a little tricky, as you need to think about what happens in a lot of situations. Like,
whether to cut off the edge from the parent and remove the subtree rooted at the current vertex, when
the current vertex is matched with a child, do we count it as part of the k set or we don’t, is the vertex
included in the subset or not.

At the end, you will have the count of selecting exactly k different vertices and the number of subsets
where they will be guaranteed to be a part of the minimum vertex cover, from there we can calculate the
number of ordered lists of size m from k vertices (from the ordered pair technique). The sum of them is
the result.

To avoid doing fft, we can do this trick: instead of multiplying m ×m, we avoid the suffix with 0s. So,
we find the last non-zero position of both arrays, say non_zero_a and non_zero_b, so we multiply two
arrays of size non_zero_a × non_zero_b. We can also stop multiplying if the multiplication will be
added to any position beyond m.

Problem C. Packet Transmission
Every query we receive can be classified in the following way.

• The query packets (source, destination pair) share a common path in the tree.

– The packets are going in the same direction. In that case we need to assume one of the packets
will never wait. So, the other packet will arrive at the first vertex of the common path, wait for
the first packet to arrive and then go after it. Since an edge can’t be used by multiple packets
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at the same time, the other packet will have to wait until the first packet crossed that edge.
We need to keep doing that until they reach the end of common path and then they can go
their own ways. If we think carefully, we can see that the other packet will have to wait some
additional time which is equal to the maximum edge cost on the common path. However if the
first packet comes early then the wait time reduces. Do the same the other way around and
take the minimum of the two.

– The packets are going in different directions. So, we need both packets to start their journey.
Eventually they might meet on the two sides of an edge where if one starts crossing, the other
must wait. Make one of them wait and the other one go and calculate the time it would take for
both them to reach their destinations. Do it both ways and take the minimum time. However
if they don’t meet at the edge then they don’t have to stop and their actual time to reach both
their destinations is the answer.

• The query packets use completely different paths. In that case the time it takes for both to reach
their destination is the answer.

We can calculate all of these using the Sparse Table to calculate Lowest Common Ancestors in a tree.
Alternatively we can use heavy-light decomposition, but that may be very slow.

Problem D. Qwiksort
We can get inspiration from bubble sort. When n is even, we will sort following segments in order:

• [1, n]

• [n2 + 1, n+ n
2 ]

• [n+ 1, 2n]

• [1, n]

• [n2 + 1, n+ n
2 ]

• [1, n]

When n is odd, we will need some extra operations, but we will not require more than 8 operations.

Problem E. Travel on the Grid
Let’s say each mine only blocks its own cell. Then we can use a shortest path algorithm with the states
(x, y, b) where b = 1 if that cell has a diffuser (either by carrying or placing). However, in our problem
each mine blocks its four adjacent cells as well. We need to handle that. If we have somehow reached a
cell with a mine, then that cell must be diffused and so we can visit any of the neighbors without worry.
It turns out that this is enough to solve the problem!

Let (x, y) be the cell we are currently in and (x′, y′) be a neighboring cell. We simply run a shortest path
algorithm over all states (x, y, b) with the following transitions.

• If (x, y) and (x′, y′) are both safe

– (x, y, 0)→ (x′, y′, 0) (no cost)

– (x, y, 1)→ (x′, y′, 1) (cost Vxy)

• If (x, y) is safe and (x′, y′) has a mine (diagonal transition)

– (x, y, 0)→ (x′, y′, 1) (cost X)

– (x, y, 1)→ (x′, y′, 1) (cost Y )
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• If (x, y) has a mine and (x′, y′) is safe

– (x, y, 1)→ (x′, y′, 0) (no cost)

– (x, y, 1)→ (x′, y′, 1) (cost Vxy)

• We can’t go to (x′, y′) if that is not a safe cell.

Clearly, these transitions are valid. But it turns out these are sufficient. Why? We can make a few
observations.

1. If we diffuse a mine, we can assume that we move onto its cell next move.

2. We can assume that we only build a diffuser right before using it on a mine.

3. If we visit a cell with a diffuser, we will never visit it again.

4. If we visit a cell without a diffuser, we can only visit it again with a diffuser.

5. If we ever visit a blocked cell neighboring a bomb, we can assume that we visit it straight after
diffusing the said mine.

6. We only ever visit at most one neighboring cell of any mine.

The time complexity is O(m · n · lg(m · n))

Problem F. Yet Another Crossover Episode
We know that x&y ≤ min(x, y) and it looks like gcd(x, y) ≤ min(x, y).

So, it looks like gcd(x⊕ y, x&y) ≤ min(x⊕ y, x&y) ≤ min(x, y).

Also notice that i can be equal to j, so it looks like the answer is max(a1, a2, . . . , an) because this is the
maximum possible gcd.

But this is wrong due to the case when x = 0 or y = 0 because then gcd(x, y) = x when y = 0 and
gcd(x, y) = y when x = 0.

So, when ai ⊕ aj = 0, we have ai = aj , so gcd(ai ⊕ aj , ai&aj) = gcd(0, ai&ai) = gcd(0, ai) = ai. So, for
this case we need to take care of the maximum number of the array only.

And when ai&aj = 0, we have ai ⊕ aj = ai + aj because there is no common bit in ai and aj so xor and
addition are the same in this case.

So we need to find the maximum ai + aj where ai&aj = 0. So let’s fix ai and then find the maximum
aj such that ai&aj = 0 which means we need to find the maximum aj such that aj is a submask of the
flipped bits of ai.

Finding the maximum submask of a mask that exists in the array is a standard problem that can be
solved using Sum Over Subsets (SOS) DP. We can also find the count of such submasks using the same
DP.

So overall we need to consider the maximum element of the array and the maximum sum of two elements
such that there is no common bit between them.

Time Complexity: O(m · 2m) where m is the number of bits in the maximum element of the array which
is bounded by 23.

Problem G. Picturesque Skyline
First let’s think about how to fix one segment of size 2k+1 without thinking about creating any gaps. We
just need to know what is the minimum number of swaps required to turn that segment into a pyramid-
like pattern group. Here is one approach to calculate the minimum number of swaps needed to make a
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segment [l, r] a pyramid-like. Let’s find the smallest number in the segment. We must either push it to
the beginning or the end of the segment, so how many moves are required to move this number? If we try
to move it to the front then we would need to swap with all the bigger numbers before it in the segment.
Similarly if we try to move it to the end then we would have to swap with all the bigger numbers after
it in the segment. Now, let’s think about the second smallest number, similarly we either move it to the
front or move it to the end, but we can’t move it past wherever we placed the smallest number. So, we
continue placing all the numbers in sorted order either to the front or the end. But we can only place k
numbers in the front and k numbers in the end and we don’t do anything with the largest number as it
will automatically be fixed in the middle.

Lets calculate for each building, the number of taller buildings that appear before the building in the
segment and how many taller buildings appear after the building in the segment. Let’s call these values ai
and bi. To make a pyramid-like shape we need to have k sorted numbers at the beginning of the segment
and k reverse-sorted numbers at the end with the largest number in the middle. Which means we need
to move some of the buildings to the front and some of them to the back. The buildings that need to be
moved to the front incurs ai cost while the others incur bi cost.

So basically, we assign each building to either type a or type b and make sure they both have the same
size. We are not counting the tallest building in anything since it doesn’t contribute anything to the
minimum cost. To do the assignment, we can take sum(bi) and convert ai to ai−bi. The smallest k values
of ai−bi will be added to sum(bi) and that would be the minimum number of moves required to make the
segment pyramid-like. We have to do it for all odd length segments and for each segment we can easily
do it in O(n · lg n) complexity. But with the total number of segments this can grow very large.

We can improve it even more. For a segment of length 3, we never need more than a single swap. Which
means, the upper bound of the result is n

3 + ε. Here ε = 7 would work. We can get substantial speedup if
we stop processing the segments that we know will need more than n

3 +ε swaps. One way to maintain that
is to build [l,r] from [l+1, r-1]. If we know the number of swaps needed for [l+1, r-1] is more than n

3 + ε
then we simply ignore these segments. However we are not sure how much speedup does this actually
provide, what we only know is that it is very good. After that we can just do a dynamic-programming
approach to split the groups. That part can be done in O(n2). Overall this performs somewhere close to
O(n2 ·

√
n), but we don’t have an exact proof.

Problem H. Are the nodes reachable?
We can split the problem into two subproblems.

When ans < 32: First for each vertex calculate the list of vertex reachable from it. Also calculate the
list of vertices from which it is reachable. Both can be done in O(n·m64 ) using bitsets. Now assume
that vertex a is reachable from vertex b. In that case vertices b − 1 or b + 1 will be reachable by
adding an edge of cost 1. We can find all the vertices from which vertex a is reachable with 1 cost
by simply binary shifting the bitset by 1 in both directions and applying the bitwise OR operator
on all three (no change, left shift, right shift) bitsets.
If we do this again then we find the vertices 2 distance away and so on. We keep doing this for
distances upto 31. The complexity to do this is O(n

2·32
64 ).

Now, let’s split the bitsets into 64 sized buckets. Technically we could’ve used an unsigned long
long array to perform the bitset operations in the first place. For each vertex we will have 33 bitset
buckets. 32 of them are for the shifted bitsets from upstream and one for the downstream. Then
for the query, we check if the first upstream bucket of V with 31 shifts and the downstream bucket
of U has any match. We can do that by simply performing a bitwise AND operation. If there is a
match then we check 30 shifts and keep reducing it. If no match is found then we move to the next
bucket. At the end in this approach we will need O( n

64 + 32) operations per query.

When ans ≥ 32: We again keep a bucket of vertices reachable from a vertex. Vertices numbered from
[1..64] are in one bucket, [65..128] are in second buckets and so on. For each bucket we only keep
the minimum and maximum id of the vertex reachable from it. Similarly we do it for the upstream
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vertices. For a query, we merge those two lists of vertices (min and max of each bucket), sort them
and find the smallest gap in consecutive vertices (one must be upstream while the other must be
downstream). This takes O(2·n64 ) per query.

Problem I. Unhappy Team
The trick is to select the unhappiness score of someone and count how many times that score appears in
the top K values. This is basically counting the contribution of each score, which works because of linearity
of expectation. We can keep a DP state bit_mask, bigger_score_count, selected_score_appeared.

Basically we will put one people one after another, every time calculating their unhappiness score. The
bit_mask will host the set of people already placed before the next person. If the score is smaller than the
selected score then we ignore it. If the score is bigger then the selected score then bigger_score_count
is incremented by one. If the score is the same as the selected score then we can consider it as bigger
or mark as selected_score_appeared. This DP will have the complexity of O(2n · n3). With some other
minor optimizations, this runs reasonably fast.

Problem J. Hand Cricket
Please note: after the round we found the solution to be incorrect. The equilibrium can be reached where
some index have their probability set to zero. The author’s solution expected all the probability to be
non-zero. As a result of this, we don’t know of any solutions to this problem at the moment. We sincerely
apologize for not catching that sooner. Below is the original solution.

The strategies are in Nash equilibrium. Therefore, Alice cannot improve her strategy. She will have the
same expected points for any index. Let this expected value be X. Let PL, PL+1, ..., PR be Bob’s strategy.
Then for all L ≤ i ≤ R,

Ai · (1− Pi) = X

=⇒ Pi = 1− X

Ai

Applying it on the definition of a strategy PL + PL+1 + ...+ PR = 1, we get

R∑
i=L

(1− X

Ai
) = 1

=⇒ X =
R− L∑R
i=L

1
Ai

Alice needs to increase X. Reducing
∑R

i=L
1
Ai

will increase X. It can be proved that Alice always increments
the smallest 1

Ai
. To implement this efficiently, we will build a persistent segment tree on the array values.

The jth root of the segment tree will account for array elements in the range [1, j]. The tree maintains
the following,

• The sum of all Ai values in the range.

• The sum of inverses of Ai in the range.

• The count of elements available in the range.

We will walk the segment tree from the root for the (L − 1)th element and the root of the Rth element.
During this traversal, we will maintain,

• How much of K is left.
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• The value and count of the small numbers that have been incremented.

On a segment tree node we can check if the whole subtree can be incremented to its maximum in O(1)
and also get the sum of inverses in O(1) if K depletes.

Problem K. Island Invasion
We unfortunately don’t have the editorial for this. We have the model solutions uploaded here.

• https://pastebin.com/XFbCgwuY

• https://pastebin.com/z7CSJkNe

Problem L. Uncle Bob and XOR Sum
Category: Maths, Gauss - Jordan Elimination, XOR Basis.

Given two arrays of integers A of length N and B of length K, how many subsets of array A are
there so that the xor sum of the subset does not contain bi as a submask where (bi ∈ B). That means
(S⊕ ∧ bi 6= bi), for all (1 ≤ i ≤ K).

That means if we choose a subset X = {x1, x2, x3, . . . , xm} then

(x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xm) ∧ bi 6= bi

or,

(x1 ∧ bi)⊕ (x2 ∧ bi)⊕ (x3 ∧ bi)⊕ · · · ⊕ (xm ∧ bi) 6= bi

This can be solved using the XOR Basis. Instead of finding a good subset xor sum, we can find the total
number of bad subset xor sums and then just subtract it from the total number of subsets.

As we could have duplicate results when calculating bad subsets, we need to carefully subtract them.

Let’s say we have calculated the number of bad subsets that has b1 as a submask and the number of bad
subsets that has b2 as a submask. There could be subsets that have both b1 and b2 as submasks. Hence,
we need to subtract them. How can we do that? We know that if a subset xor sum S⊕ contains both b1
and b2 as submasks then

S⊕ ∧ b1 = b1 and S⊕ ∧ b2 = b2

We can derive a new equation from them:

(S⊕ ∧ b1) ∨ (S⊕ ∧ b2) = b1 ∨ b2

Or,

S⊕ ∧ (b1 ∨ b2) = b1 ∨ b2

That means we need to find the subsets which contain b1 ∨ b2 as a submask and then subtract it. More
formally, we need to use the Inclusion–exclusion principle.

Complexity:

We need to calculate the basis 2k − 1 times. Hence, the complexity per test case is O(2kNL2) where L is
the number of rows/equations we need to add. This could be as big as 32 because all numbers will fit in
a 32-bit signed integer. If we use bitset, the complexity will be reduced by a constant factor of 32/64.
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However, the above solution is too slow for the given constraints for this problem. We can actually optimize
the solution even further. In our previous solution for each of the 2k−1 bases we are inserting ai∧b where
1 ≤ i ≤ n and b is the OR of elements of the chosen subset of the array B. In reality, what we are doing
is inserting submasks of ai. Instead of doing this for all ai, we can actually precalculate the basis of A.
Then for each subset of B we need to calculate the basis over basisA(i) ∧ b if the ith bit of basisA(i) is
set, where 0 ≤ i ≤ 32. If we can make b, then the number of subsets that can make XOR Sum b would be
2(n−rank), otherwise 0.

Proof: Let, BA be the basis vector of A. Let f(a) be the number of subsets of A with XOR SUM a.

Let X be a subset of B and x be the OR of elements of X.

Lemma 1: S⊕ ∧ x = x

Lemma 2: f(a) = 0 or 2(n−r) where r is the rank of basis vector BA.

For each subset X of B, we need to solve the following problem: how many subsets of A are there which
contain all elements of X as a submask. Let, x be the OR of elements of X. Then we need to find how
many subsets of A are there which contain x as a submask according to Lemma 1. In other words,
we want to find the sum of f(a) over all supermasks of x. Let g(x) be the number of supermasks of x
which can be made as a XOR SUM. Then by Lemma 2, we need to find g(x) × 2(n−rank). The g(x) can
be calculated with a modification of basis finding. Let’s ignore all off bits of x and perform Gauss-Jordan
Elimination only on the set bits. Let r′ be the new rank. If we can make x, g(x) = 2(n−r

′) otherwise,
g(x) = 0.

Complexity of precalculating the basis of A: O(NL2/32)

Complexity of finding the final answer: O(2kL3/32), here we are able to reduce N to L.

Overall complexity:

O
(
(2kL3 +NL2)/32

)
Note: Need to handle a few corner cases like 0 in array A and array B.

Problem M. Tree Flip
First let’s think how we would have solved it if the limit on n was not so high. We will go down from
the root to leaves in BFS fashion (or DFS would also work) and if we find a node with value 1, then we
will make an operation at that node. This is the optimal way. Another way to think about it is, suppose
we have 1 at a node x and all the other nodes are 0. To make the entire tree zero, we actually need to
perform operations at all the nodes in the subtree of x (including x). Now just XOR all the corresponding
subtrees of all the 1 nodes, you will know which nodes to perform operation at. So, if the root is u, the
answer is the number of nodes v such that the xor of values from u to v is 1.

We can efficiently solve the problem using this last observation. First “centroid decompose” the entire
tree. Then, for the query for a node x as root (Update 2), check the nodes in the path from x to the root
in the centroid-decomposition tree. Say we are at y. Suppose we know the xor of values from x-to-y (this
is easy to obtain using a segment tree on the euler tour of the original tree). Then we will need to find
out how many nodes in the tree rooted at y have xor-path 1 from y. Depending on the xor value of the
path x-to-y, you might need to actually find the xor-path 0 value in the tree rooted at y. All these are
details to the implementation. But the main idea here is that we will need to maintain yet another set
of segment trees for each of the components in the centroid decomposed tree to perform all these queries
efficiently. Once you figure out how to do the Update 2 operation efficiently, you will be able to find out
the efficient way to perform Update 1 operations.
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